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Summary. We present an algorithm for the evaluation of the operators J ij and K i~ 
as well as for the full four-index transformation from primitive molecular integrals 
stored in partially reordered sets of triples (pq [ rs), (prl qs), (psi qr) rather than in 
canonical order. 
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1 Introduction 

It is well known that the conventional routines for building Coulomb and exchange 
operators from the stored primitive electron repulsion integrals such as they are 
implemented in Hartree-Fock programs should not be used when a large number 
of operators from a set of molecular orbitals or the so-called full four-index 
transformation of the molecular integrals is needed. In connection with multi- 
reference and configuration interaction calculations either one of the following 
situations may arise. If N is the total number of orbitals, p, q, r . . .  designate indices 
or labels of the basis functions (AOs) and i,j, k . . .  molecular orbitals (MOs) w i t h  
expansion coefficients C(i, p), then a number of Coulomb operators j i j  = (ij[pq) 
and exchange operators K ij:~ _-- 0.5 [(pi [jq) +_ (PJl iq)] in terms of a restricted set of 
M MOs (i,j = 1 , . . . ,  M <~ N, often M ,~ N) may be required in the AO basis 
("two-index integral transformation") or transformed to the MO basis ("four index 
transformation"). Following Saunders and van Lenthe [1] we speak of a partial 
transformation if only an incomplete list of transformed integrals is required, e.g. 
a selection of Coulomb or exchange operators. The construction of all possible 
Coulomb operators in the MO basis, i.e. the transformation of an integral list over 
N AOs to M MOs is termed "full transformation" even if M < N. Special algo- 
rithms have been developed to this purpose which reduce the number of operations 
considerably, because instead of the construction of one operator at a time by 
multiplication of the repulsion integrals with density matrix elements correspond- 
ing to an N 6 step typical for Hartree-Fock programs the efforts are proportional 
to N 5 when two or more consecutive multiplications with orbital expansion 
coefficients are carried out l-1-8]. For rapid transformation the primitive integrals 
should be arranged in suitable order. If the orbital labels are not stored together 
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with the integrals this is usually the so-called canonical order. Saunders and van 
Lenthe [1] propose a slightly different ordering which allows a more efficient 
program structure. 

We take the opportunity of the sixtieth birthday of Prof. Werner Kutzelnigg 
to present an alternative method which we have used for several years already 
without the intention of publishing. Following an idea of Meyer and Ahlrichs (see 
[9] and ref. 7 therein) instead of the canonical order the integrals can be stored in 
triples together with their labels, as will be explained in more detail below. This 
method which is frequently used among the pupils of Kutzelnigg has several 
advantages: Depending on the algorithm of integral evaluation certain preparatory 
steps need be carried out only once and the length of the integral file can 
considerably be reduced when small integral triples are omitted. Furthermore it 
allows efficient construction of the Fock operator when doing Hartree-Fock 
calculations. Therefore a fast method for the integral transformation is desirable. 

2 The integral program 

Our integral program is a very fast combination of the HONDO formalism by 
Dupuis et al. [10] and King and Dupuis [11] for cartesian Gaussian basis 
functions (delivering the integrals in/-shell packages) and the integral storage by 
triples. As usual in HONDO an outer set of loops running over the different shells 
is combined with loops over the primitive functions or contractions within each 
shell (a shell consists of all basis functions with the same center, orbital exponents, 
contraction scheme and angular momentum quantum number). The basis func- 
tions need not be chosen symmetry adapted. Instead equivalent sets of integrals are 
calculated only once and given an appropriate weight (as a consequence after 
construction in the AO basis the operators must be symmetrized). Each record of 
the integral file consists of the four labels of the basis functions p ~> q >/r >~ s and 
the three integrals R1 = (pq]rs), R2 = (prl qs) and R 3 = (pslqr). The integral 
triples can be thought of as constructed in a fourfold loop; they would then be 
ordered in the same way. Because of multiple storage of integrals with identical 
labels the total number of integrals is slightly larger than in canonical order. 
However, because of the use of shells and of equivalences and because small 
integral triples are omitted, not all possible triples are stored and the stored triples 
are not strictly ordered. 

For the present application in contrast to Ahlrichs' original proposal the three 
integrals of each triple must be multiplied with the following factors: 1 if all orbital 
labels are different; 1/2 if p = q, q = r or r = s; 1/4 if p = q and r = s; 1/6 if 
p = q --- r or q = r = s; 1/24 if all four labels are identical. This is equivalent to 
dividing by (1 + fipq)(1 + fi,~)(1 + 6pq,rs) and omitting identical integrals. 

3 Preparation of the integral files 

Given a file of primitive integrals before transformation the following preparations 
have to be carried out: 

• Construct an integral file (A-file) which is arranged strictly in the order of the 
first and second label. This means that the values of p must increase monot- 
onously and the same must be true for the q within constant p. The ordering of 
the r and s labels as well as the completeness of the triples is irrelevant. 
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• Construct an integral file (B-file) which is arranged in the order of the first and 
third label, p and r. 

This task can be accomplished easily with a sorting routine (e.g. Quicksort). 
Ordering of the whole integral file can be broken down to ordering of all integral 
triples belonging to the same largest shell label (the outermost loop of the integral 
program). Thus, the size of the largest block of integrals to be ordered is propor- 
tional to N 3. At the same time premultiplication of the integrals with the factors 
discussed in the preceding section can be carried out, if not already done in the 
integral program. Ordering techniques have been introduced by Yoshimine [12] in 
the context of configuration interaction calculations, however applied rather to the 
list of symbolic matrix elements than to the electron repulsion integrals. 

4 Integral transformation 

Integral transformation consists of two consecutive two-index transformations, 
first the construction of operators in terms of MOs and second the transformation 
of these operators to MO basis. 

The first step where the crucial reduction of floating point multiplication 
operations (FPMOs) can be achieved is shown below in FORTRAN-like notation; 
+ = means to add the right-hand side to the sum at the left. Six M x N matrices 

UX,  UY,  VX,  VY, W X ,  W Y  and a second set of orbital coefficients D(i ,p)  
= 0.5 • C(i, p) (i = 1 , . . . ,  M, p = 1 . . . . .  N) must be provided. 

D O I O 0  all pairs of l abe l sN~>x~>y~>l  
Initialize matrices UX,  U Y, VX,  VY, WX ,  W Y  to zero. 

C Processing of the primitive integrals: 2M FPMOs per integral. 
DO 20 Read all integral triples with labels x and y from the A file. 
A I  = (xyl rs), A2 = (xrlys),  A3 = (xslyr)  
DO IO i = I , M  
A I R  = A1 • C(i, r), A 2R  = A2 • C(i, r), A3R  = A3 * C(i, r) 
A1S  = A1 * C(i, s), A2S  = A2 * C(i, s), A3S  = A3 * C(i, s) 
UX(i ,  r) + = A2S, VX(i,  r) + = A1S  + A3S, WX(i ,  r) + = A1S  - A3S  
UX(i ,  s) + = A3R,  VX(i,  s) + = A 1 R  + A2R,  WX(i ,  s)+ = A 1 R  - A 2 R  
UY(i, r) + = A3S, VY(i, r) + = A1S  + A2S, WY(i ,  r) + = A1S  -- A2S  

10 UY(i, s) + = A2R,  VY(i, s) + = A 1 R  + A3R,  WY(i,  s) + = A1R  - A3R  
20 C O N T I N U E  

DO 40 Read all integral triples with labels x and y from the B file. 
B1 = (xq l ys), B2 = (xy [ qs), B3 = (xs f qy) 
DO 30 i = 1, M 
B1Q = B1 • C(i, q), B2Q = B2 • C(i, q), B3Q = B3 * C(i, q) 
B1S = B1 • C(i, s), B2S = B2 • C(i, s), B3S = B3 • C(i, s) 
UX(i ,  q) + = B1S, VX(i,  q) + = B2S + B3S, WX(i ,  q) + = B2S - B3S  

30 UY(i,  s) + = B1Q, VY(i, s) + = B2Q + B3Q, WY(i ,  s) + = B2Q - B3Q 
40 C O N T I N U E  
C Second multiplication: N 3 FPMOs per operator. 

DO 80 a l l M O p a i r s M 1 > i ~ > j ~ > l  
DO 60 t = l , x  
J'J(x, t) + = c(i, y ) ,  u x ( j ,  t) + c( j ,  y ) ,  u x ( i ,  t) 
K'J+ (x, t) + = O(i, y)* VX( j ,  t) + O(j ,  y ) .  VX(i,  t) 
K~J- (x, t) + = D(i, y)* W X ( j ,  t) -- D(j ,  y ) .  WX(i ,  t) 
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60 CONTINUE 
DO 70 t = 1, y 
J'J(y, t) + = C(i, x)* UY(j,  t) + C(j, x)* UY(i, t) 
K iJ+ (y, t) + = O(i, x)* VY(j, t) + O(j, x)* VY(i, t) 
K ° -  (y, t) + = O(i, x) * WY(j ,  t) - O(j, x) * WY(i, t) 

70 CONTINUE 
80 CONTINUE 
100 CONTINUE 

After this step either the diagonal elements of the matrices (which are all 
arranged as triangles) must be multiplied by 2 and then the operators can be stored 
away or if desired the second two-index transformation may be carried out. If 
M < N, transformation of a number of both Coulomb and exchange operators 
may be required. The full transformation, on the other hand, can of course be 
restricted to Coulomb operators. The transformation is performed along the lines 
of a method explained by Saunders I-1], reducing the number of FPMOs propor- 
tional to N 2 to the account of FPMOs proportional to N. Moreover, as the 
ordered set of all operators j i j  transformed to MO basis contains every integral 
twice, storage and computing time can be saved if only [ij] elements of the [ij]th 
operatror are transformed and stored consecutively in the case of the full trans- 
formation ([ij] = i(i - 1)/2 + j; i >~ j). This procedure automatically arranges the 
transformed integrals (ijl kl) in canonical order. For Coulomb operators the 
synthesis of both ideas goes as follows (remember that the diagonal elements have 
not been doubled): 

DO 200 [ij] = 1, [ M M ]  (all operators j i j ;  i >~j) 
C iN2/2 + i2N FPMOs per operator in the ith row. 

DO 180 k = l , i  
Initialize auxiliary vector Z(N)  to zero. 
DO 120 t =  1, N 
DO 120 t ' = l , t  

120 Z(t) + = J~J(t, t') • C(k, t') 
DO 160 t = l , N  
DO 140 l = l , k  

140 IF([kl]  <~ [ij]) (ijl kl) + = C(l, t ) ,  Z(t) 
DO 150 l = k , i  

150 IF([Ik-I <<, [ij]) (ijllk) + -- C(/, t ) , Z ( t )  
160 CONTINUE 
180 CONTINUE 
200 CONTINUE 

5 Discussion 

If M ~ N processing of the primitive integrals is the slowest step; if M ~ N the 
second part of the first two-index transformation and the transformation of the 
operators to MO basis are most expensive. It may be a disadvantage of this 
algorithm that in the first step two integral files are needed simultaneously (the 
original file can be discarded if the construction of single operators using density 
matrix elements is reformulated such that the new files can be processed) and that 
storage for a number of not too small auxiliary matrices as well as for the 
transformed operators must be provided. When only Coulomb operators are 
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desired, e.g. in CASSCF calculations or for the full transformation, only those 
operations need be carried out which involve the matrices UX, U Y, thus consider- 
ably reducing computational and storage requirements. Furthermore, main stor- 
age can be saved if the above transformation is segmented and only part of the 
operators constructed at a time. Of course this requires multiple processing of the 
integral files. Our formalism works even when only the set of all operators O°,j <<, i, 
with fixed i is evaluated simultaneously. While the number of passes is less than 
M/2, say, this is still faster than repeated construction of single operators. 

The various available integral transformation algorithms have all more or less 
the same performance, always proportional to N 5 or N 4 M  and only the coeffÉ- 
cients differ. Although it was not the aim of the present work to compete in speed 
with other algorithms we shall discuss the important contributions and compare 
the coefficients of the leading terms with the method of Werner and Meyer (WM, 
[8]) which has the same performance as the formalism proposed by Saunders and 
van Lenthe for partial transformation [1]. Processing the primitive integrals 
requires 2ZM FPMOs for Coulomb operators only (WM 2ZM), (IO/3)ZM 
FPMOs for exchange operators (WM 2ZM) and 4ZM FPMOs if both Coulomb 
and exchange operators are evaluated simultaneously (WM 3ZM). Here Z is the 
total number of processed integrals, (1/8)N '~ + (1/4)N 3 in the case of canonical 
storage or (1/8)N 4 + (3/4)N 3 when all integrals are stored in triples; M is the 
number of involved MOs. 

The second step of the first two-index transformation requires N 3 FPMOs per 
operator J, K ÷ or K -  (WM N 3 for J operators, (4/3)N 3 for quadratic K oper- 
ators). Here we can no longer profit from the reduced length of the integral list. 
FPMOs can be saved if only nonvanishing MO coefficients are processed. Of 
course only the desired operators need be evaluated. This applies also to the second 
two-index transformation yielding M x M  matrices, where (1/2)N2M + N M  2 
FPMOs are required per operator (WM (28/24)NaM(M + 1) for all operators). 

For the full four-index transformation (Coulomb operators only) our method 
requires (28/24)N 5 FPMOs, about 10% slower than the fast formalism by Saun- 
ders and van Lenthe [1] which needs only (25/24)N 5 FPMOs. Partial transfor- 
mations: For the construction of all Coulomb operators with M orbitals we need 
about 0.25MN 4 + 0.5M2N 3 q- 2MN 3 FPMOs (WM 0.25MN 4 + 1.25M 2 N 3 - [  - 

1.75MN3), for all exchange operators 0.42MN~ + M 2 N 3 +  3.5MN a FPMOs 
(WM 0.25MN 4 + 1.67M2N 3 + 1.17MN3), and for all Coulomb plus exchange 
operators 0.5MN 4 + 1.5M2N a + 4.5MN 3 FPMOs (WM 0.38MN 4 + 
2.92M2N 3 + 3.67MN3). 

Our algorithm has hitherto not been implemented on computers equipped with 
parallel or vector processors. Since it consists essentially of the same steps as are 
carried out in constructing electron repulsion operators (read stored molecular 
integrals, multiply with constants and add them to certain storage positions) it is 
expected to perform on such machines like a Hartree-Fock program. 
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